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J .  Phys. A: Math. Gen. 18 (1985) 2917-2936. Printed in Great Britain 

Supersymmetric quantum mechanics of one-dimensional 
systems 

C V Sukumar 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
U K  

Received 16 April 1985 

Abstract. It is shown that every one-dimensional quantum mechanical Hamiltonian HI 
can have a partner H ,  such that H ,  and H ,  taken together may be viewed as the components 
of a supersymmetric Hamiltonian. The term 'supersymmetric Hamiltonian' is taken to 
mean a Hamiltonian defined in terms of charges that obey the same algebra as that of the 
generators of supersymmetry in field theory. The consequences of this symmetry for the 
spectra of HI and H, are explored. I t  is shown how the supersymmetric pairing may be 
utilised to eliminate the ground state of H,, or add a state below the ground state of H ,  
or maintain the spectrum of H,.  It is also explicitly demonstrated that the supersymmetric 
pairing may be used to generate a class of anharmonic potentials with exactly specified 
spectra. The complete spectrum of an anharmonic potential so generated consists of all 
the eigenstates of the simple harmonic oscillator and, in addition, a ground state at a 
specified energy E which lies arbitrarily below the E = f  ground state of the harmonic 
oscillator. 

1. Introduction 

In field theory, supersymmetry is a symmetry that generates transformations between 
bosons and fermions. The generators of the supersymmetric transformations are spinor 
charges whose algebra involves anticommutators, unlike the generators of other sym- 
metries whose algebra involves commutators. Supersymmetry raises the possibility of 
providing a framework for a unified description of bosons and fermions which are 
combined in the same supersymmetric multiplet (Wess and Zumino 1974). Further- 
more, supersymmetric field theories are found to be much less divergent than ordinary 
field theories. These attractive features have aroused enormous interest in supersym- 
metric field theories. A full understanding of such theories requires familiarity with 
Grassmann algebra, the algebra of anticommuting quantities. It has been shown that 
supersymmetric field theories may be constructed by defining a superfield in a super- 
space, a space consisting of the usual spacetime and in addition the anticommuting 
spinors of Grassmann (Salam and Strathdee 1975). The superfield cp is then a function 
of spacetime coordinates x and also of 0 and $ where 8 is an odd member of the 
Grassmann algebra and e is its conjugate. The supersymmetric transformation may 
be viewed as a Grassmann even translation in this superspace. The generators of this 
transformation are the supercharges. Supersymmetric field theories may also be defined 
without explicit reference to superspace or to Grassmann numbers. 

In an important paper on supersymmetry, Witten (1981) constructed as a simple 
example of a supersymmetric system, a spin-4 particle moving in one dimension. This 

0305-4470/85/152917 + 20s02.25 @ 1985 The Institute of Physics 2917 



291 8 C VSukumar 

was an example of a supersymmetric system with no reference to a field theory at  all! 
Witten also defined the algebra that must be satisfied by the charge operators in terms 
of which the supersymmetric Hamiltonian may be expressed. These algebraic relations 
that Witten first formulated have now become the defining relations of supersymmetric 
quantum mechanics. The connection of these relations to the field theoretical counter- 
parts may also be established. The arguments given below are those of Freedman and  
Cooper (1983) and Takeda and Ui (1984). Quantum mechanics in one dimension is 
defined by the Hamiltonian i p ’ +  V ( x )  and the commutation relation [x, p ]  = ih. Field 
theory starts by defining a spacetime and  the field cp(x, t )  is defined in this spacetime. 
The dynamics of the system is determined by an  action. In d = 1, the action S is given 
by S = S d t [ ( t ~ ~ c p ) ~ -  V(cp)] .  It is well known that d = 1 quantum mechanics is formally 
equivalent to the d = 1 quantum field theory with the identification xct  cp, p - d l c p  and 
canonical quantisation of the field cp leads to the usual commutation relation between 
x and p .  Similarly, by constructing a Lagrangian invariant under the supersymmetric 
transformation, i.e. by generalising the d = 1 field to the superfield defined in superspace 
and integrating out the Grassmann coordinates associated with the superspace a 
Lagrangian expressed in terms of the component fields of the superfield is obtained. 
Canonical quantisation then leads to the supersymmetric quantum mechanical Hamil- 
tonian first defined by Witten (1981). 

The word ‘supersymmetry’ was originally used to denote a symmetry built into 
certain field theories that permits transformations between the component fields whose 
intrinsic spins differ by ih. In this paper, the term ‘supersymmetry’ is used in a general 
sense; none of the systems referred to in this paper have anything to d o  with spins at  
all. The term ‘supersymmetric system’ is used to describe systems governed by an  
underlying algebra which is identical to or derivable from the algebra of supersymmetry 
in field theory. This algebra is the algebra explicitly defined by Witten. 

Just as in field theory, supersymmetry leads to specific relations between the 
component sectors of a supermultiplet, so also in supersymmetric quantum mechanics, 
the existence of a symmetry generating operator that commutes with the Hamiltonian 
leads to certain specific relations between the spectra of the component parts of the 
supersymmetric Hamiltonian. This is the major reason for the upsurge of interest in 
supersymmetric quantum mechanics (Blockley and  Stedman 1985, Ui 1984, Kosteleckey 
and  Nieto 1984, Yamagishi 1984). Bernstein and Brown (1984) showed that by 
exploiting the degeneracy between the spectra of the ‘bosonic’ and ‘fermionic’ sector 
of certain one-dimensional supersymmetric Hamiltonians, the properties of the first 
excited state of the bosonic component may be inferred from the knowledge of the 
ground state of the fermionic component. It has been shown recently by Andrianov 
er a1 (1984) and Sukumar (1985a) independently that all one-dimensional quantum 
systems have supersymmetric partners. Andrianov er a1 have also shown that a simple 
extension of supersymmetric quantum mechanics to arbitrary dimensions is possible. 

In an  earlier communication (Sukumar 1985a) it was shown that the existence of 
a supersymmetric partner to every one-dimensional Schrodinger equation implies the 
existence of a hierarchy of Hamiltonians with a special relationship between the 
eigenvalues and  eigenfunctions of the different members of the hierarchy. In this 
paper, we present a full version of the properties of supersymmetric partners in one 
dimension. In the accompanying paper (Sukumar 1985b, hereafter referred to as 11) 
we study how some aspects of the inverse scattering theory can be understood using 
the concept of a supersymmetric partner to a Hamiltonian. The plan of this paper is 
as follows: § 2 presents the defining algebra of supersymmetric quantum mechanics 
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and the implications of this algebra for the spectra of the component parts of the 
supersymmetric Hamiltonian. The factorisation of the Schrodinger equation is dis- 
cussed in 0 3 .  The procedure for the elimination of the ground state of a Hamiltonian 
is discussed in 54. Section 5 shows how supersymmetry may be used to introduce 
new bound states to a given Hamiltonian or generate a new Hamiltonian with unaltered 
spectrum. Section 6 presents examples to illustrate the procedure outlined in 0 5 and 
0 7 contains the conclusions. 

2. Supersymmetric quantum mechanics 

According to Witten, supersymmetric quantum mechanics is characterised by the 
existence of charge operators Qi that obey the algebra 

{Q,,Q]}=&X i , J = l , 2  , . . .  N (1) 

[Q, 21 = 0 (2) 
where 26 is the supersymmetric Hamiltonian, N is the number of generators and 
{. . . , . . .} denotes an anticommutator. In this paper, we consider the simplest of such 
systems with two operators Q1 and Q2. In terms of Q = ( Q1 + iQ2)/& and its adjoint 
Q' = (Q,  - i Q 2 ) / h  the algebra governing this supersymmetric system can be charac- 
terised by 

%= ( 0 ,  Q') Q 2 = 0  and Q"=O. (3 1 

IQ, 2 1 = 0  and [Q', XI = 0 (4) 
From these equations, it is easy to see that 

i.e. the charge operator Q is nil-potent and commutes with the Hamiltonian 2. A 
simple realisation of the algebra defined in equation (3) can be achieved by considering 

Q=(;- :) and 0 A+ 
( 5 )  

where A- is a linear differential operator, A' is the adjoint and Q2 = 0 by construction. 
This construction does not make any assumptions about the commutator [A+, A-]. In 
particular, the commutator of A' and A- is not restricted to be a constant as in the 
case of the simple harmonic oscillator. Equation (5) leads to the supersymmetric 
Hamiltonian 

.=( A' A- 

Since 

we can say that the operators Q and Q' induce transformations between the 'bosonic' 
sector represented by CY and the 'fermionic' sector represented by p. We may also 
interpret X in the following way: the scalar Hamiltonian HI = A+A- has a partner 
H ,  = A-A' such that HI and H, are the diagonal elements of a supersymmetric 
Hamiltonian X.  Having demonstrated that a Q and an X can be constructed, we 
switch to the operator language of quantum mechanics to find out what the consequen- 
ces of the existence of a charge operator that commutes with the Hamiltonian are for 
the spectra of the two sectors H ,  and H,. 
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A' A -  and A-A' are both positive semi-definite operators with eigenvalues greater 
than or equal to 0. Let $, be a normalised eigenstate of H ,  with eigenvalue E , .  Then 

A'A-4, = E ,  $,. (8) 

A-A' (A-$ , )  = E , ( A - $ , ) .  ( 9 )  

Multiplication from the left by A -  leads to 

If A - $ ,  # 0, we can infer that E, is also an  eigenvalue of A-A'. The corresponding 
normalised eigenfunction $* of Y2 is given by 

$ 2 =  ( E l ) - 1 ' 2 ( A - $ l ) .  (10) 
The same reasoning may be applied starting from the eigenvalue equation for H 2  
instead of H1 to investigate whether every eigenvalue of H2 is also an  eigenvalue of 
HI. If E2 is an  eigenvalue of H2 with eigenfunction $2, 

A-A'$,, = (11) 

A'A-(A'$,) = E2(A'$2). (12) 

then 

Therefore if A+G2#0 ,  then E* is also an eigenvalue of HI with the corresponding 
normalised eigenfunction 

$1 = (~52) -"~(A'$z ) .  (13 )  
In  view of the above relationships, three possibilities can be distinguished from each 
other. 

( a )  If there is a normalisable eigenstate of H ,  such that A-$iO'=O, then 
A'A-$\'' = 0 and 4:'' corresponds to the ground state with eigenvalue E:'' = 0. Con- 
versely, for the eigenvalue E\'' = 0, the vanishing expectation value ($\o'IA'A-l$jo') 
implies that A-$:'' = 0. Under these circumstances, H2 has no normalisable eigenstate 
with E2 = 0, i.e. there can be no normalisable state with A'$* = 0. The ground-state 
eigenvalue of H2 is non-zero. All eigenvalues other than the ground-state eigenvalue 
of HI are also eigenvalues of H2 and all eigenvalues of H z  are also eigenvalues of HI. 
The resulting spectral mapping is shown in figure l ( a ) .  

( b )  If there is a normalisable eigenstate of H 2  such that A'$"' = 0, then A-A'$:'' = 
0 and $p' corresponds to the ground state of A-A+ with eigenvalue Ep' = 0. There 
cannot be a normalisable state of A'A- with eigenvalue zero that satisfies A - + ,  = 0. 
The ground state of HI has non-zero eigenvalue. All eigenvalues other than the ground 
state of H2 are also eigenvalues of HI, and  all eigenvalues of HI are eigenvalues of 
H2.  This leads to the spectral mapping shown in figure l ( b ) .  

-- -- -- 
o- - -  - 

Hl H2 Hl HZ HI H 2  
( a )  l b )  l c l  

Figure 1. Schematic diagram of the possible alignment of the eigenvalues of the operators 
H ,  = AtA- and H ,  = A-A'. 
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(c)  If there is no normalisable eigenstates of H1 or H2 such that either A-+, = 0 
or A+I+!J2=0, then the spectra of both HI and H ,  begin at positive values. Every 
eigenvalue of HI is then also an eigenvalue of H2 and vice versa. The resulting spectral 
mapping for this case is shown in figure l ( c ) .  

In each of the cases (a) ,  (b )  and (c),  the eigenfunctions of HI and H 2  for a common 
eigenvalue E are linked in the manner indicated below: 

+ 2 ( E )  = exp(icp)( E )-1’2A-+l(E 1 
+ 1 (  E )  = exp(-icp)( E)-”’A’I+!J1( E )  

(14a) 

(14b) 

in which cp is an arbitrary phase whose significance will become clear in later discussion. 
The ladder structure of the eigenvalue spectrum shown in figure 1 and the intertwining 
relationship between the eigenfunctions in equation (14) are characteristic hallmarks 
of supersymmetric systems in one dimension and serve as the signatures by which an 
underlying supersymmetry may be inferred. 

Bernstein and Brown (1984) and Nieto (1984) considered operators of the form 

A*=[*d/dx+ ?(x)] (15)  

where V(x) was assumed to be a known function of x. This assumption restricts the 
applicability of supersymmetric quantum mechanics to a limited class of problems. 
In the next section, we show that it is not necessary to assume that V(x) is known 
and that V may itself be generated from the solutions of the Schrodinger equation in 
one dimension. Such a generalisation then extends the applicability of supersymmetric 
quantum mechanics to all one-dimensional problems (Andrianov et a1 1984, Sukumar 
1985a). 

3. Factorisation of the Schrodinger equation 

The Schrodinger equation in n dimensions is governed by the Hamiltonian 

H = -fV’+ V(x,, . . . x,) (16) 

where V2 is the Laplacian in n dimensions and V is the potential. H can always be 
factorised in the form 

H = 1 A;A;+ 8 

A: = (l/&)(*C, + U,) 

(17a) ” 
with 

(176) 

V, the gradient operator and 8 an undetermined constant, provided that the unknown 
function U, satisfies 

(18) 1 (V,U, + U:)  = 2( v- 8). 
n 

This is a nonlinear equation with a family of solutions. One member of the family is 
given by 

1 
U, =- *( 8)vfl*(x, 8) (19) 

where +(8) is a solution of the Schrodinger equation at energy E = 8, i.e. 

H+ = 8+. (20) 
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It can easily be verified that (19) satisfies (18). Since 

1 1 
V,U, =-V' ,*-y(V,*)2  + * 

v2* ~(V.u,+uZ,)=-=2(v-8). 
n * 

It is clear that this argument is valid only if +(x, 8) is non-vanishing, i.e. +(x, 8 )  is 
nodeless. In the rest of this paper we consider only the solutions in one dimension. 

It is shown in the appendix that in one dimension the family of solutions to the 
nonlinear equation (18) is given by 

where A is an arbitrary parameter. Every choice of energy 8 and the corresponding 
+(x, 8) leads to a possible factorisation of H in the form H = A+( %)A- (  55') + '%. The 
choice of the factorisation energy 8 and the selection of a member from the family 
of solutions U (  8, A )  must clearly be motivated by the particular circumstances of a 
given problem and by physical considerations. 

A distinction between the supersymmetric field theory and the supersymmetry of 
the Hamiltonians considered in this paper must be made. In supersymmetric field 
theory, the supersymmetric Hamiltonian is required to be positive semi-definite and 
the ground state must have zero energy. In supersymmetric quantum mechanics, the 
operators A+A- and A-A+ are required to be positive definite, but the Hamiltonians 
HI = A+( %)A- (  8) + 8 and H2 = A-(  8 ) A + (  8) + 8 are not required to be positive 
definite because 8 occurs as an arbitrary non-positive definite factorisation energy. 
This is related to the fact that in quantum mechanics, in contrast to quantum field 
theory, the origin of the energy scale is arbitrary. Different choices of. 8 lead to different 
operators A( $) and the relation between the spectra of HI and H 2  crucially depends 
upon the factorisation energy 8, as the following analysis will show. 

If we consider the factorisation H = A'( %)A-(  8) + 8 for a Hamiltonian with 
ground state at energy E('), then the requirement that A+A- be a positive semi-definite 
operator can be met only if the energy 8 is chosen to be 8 s E(').  We consider the 
case when the factorisation energy 8 = E"' in the next section. 

4. Factorisation energy dp equals ground-state energy E(') 

With the choice of E(') as the factorisation energy, the ground-state wavefunction 
+(x, E''') is nodeless and vanishes in the asymptotic region 1x1 + 00. The requirement 
that U(x)  in equation ( 2 2 )  should not be divergent leads to the choice A =CO, giving 

d 
dx  

~ ( x )  =-In +(x, E"') 

A*(E(o))=-[*-+(-~n l d d  $(x,E"') 
dx dx 
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It is clear that A+A- has a spectrum beginning at 0, with a ground state which satisfies 
A-+"' = 0 with +('I = +(x, E"'). The analysis of § 2 can now be used by considering 
the partner Hamiltonian 

(24a) fi = A-(E''))A+(E('))+ E"'= H+[A-(E'"), A'(E"')] 

corresponding to the potential 

H and fi must have their spectra aligned as in figure l ( a ) .  fi has no eigenstate 
corresponding to the ground state of H and all the excited states of H are degenerate 
with the eigenstates of fi. The eigenfunctions of the two Hamiltonians are linked in 
the form 

$(x, E )  = ( E  - E'o')-"2A-(E'o')+(x, E )  (25a) 

(256) 

by choosing the phase cp in equation (14) to be zero. These equations are valid not 
only when E is one of the discrete eigenstates of H, E = E'"(J # 0), but also when E 
lies in the continuous part of the spectrum. When E lies in the continuous part of the 
spectrum of H, the above equations can be used to find a relation between the 
transmission coefficients in the potentials V(x) and q ( x )  at energy E, since the 
asymptotic form of the wavefunction for potential V at energy E implies a definite 
asymptotic form for the wavefunction for at the same energy. The procedure will 
be illustrated by considering the phaseshifts for the solutions of the radial Schrodinger 
equation in 11. 

Since the above analysis is valid for any one-dimensional Hamiltonian HI with 
ground state [E',O', +',O'] the process of finding a supersymmetric partner can be iterated 
(Sukumar 1985a) to generate the hierarchy of Hamiltonians 

+(x, E )  = ( E  - E ( ~ ) ) - ~ / ~ A + ( E ( ~ ) ) $ ( X ,  E )  

n = 2 , 3 . .  . (26a) 
1 d2 
2 dx2 

H,(x)= -- -+ V , ( x ) ~ A ~ A , + E j P ' = A , - , A ~ _ , + E ' , q l ,  

where 

n = 1 , 2 , .  . . 

n = 2 , 3 , .  . . 

in which [E: ' ,  +:"I are the eigenstates of Hn with the property that 

(27a) 

(27b) 
+::;I) = [ E ( , m )  - ~ ( 0 )  n - 1  ]-'/ZA+ n-1 +;m) n = 2 ,3 , .  . . ; m = 0 , 1 , 2 , . .  . . (27c) 

A pictorial representation of the eigenvalue correspondence of the Hamiltonian 
hierarchy is given in figure 2. The equations given above show that the excited states 
of VI can be obtained from the ground states of the hierarchy V,. Several examples 
of this Hamiltonian hierarchy have already been given (Sukumar 1985a). Here we 
discuss one more example of the hierarchy H,,. 

E',") = ~km;1) = . . .  = E ( l m + n - l )  

+',"I = [ , q ( , m )  - ~ ( 0 )  ] - I / ~ A -  +;y;I) n-1  n-1 
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H. H2 H, H4 H, H6 

Figure 2. Schematic diagram of the eigenvalue spectra of the Hamiltonians in the hierarchy 
H,. The number of bound states of H, is arbitrarily chosen to be 5. 

4.1. Attractive sech’ x potential 

Let 

VI  = -A sech’ x A ,  > 0. (28) 
Since this potential is attractive in all space --Cos x 
bound state irrespective of the strength of the potential. In terms of the parameter 

it will support at least one 

Q, = (2A1 ++)”’ 3 i (29) 

m = 0 , 1 , 2 , .  . .  N s ( Q , - $ ) .  (30) 

the spectrum of this potential is given by (Morse and Feshbach 1953) 
E ( ” )  = - f [ Q 1 - ( m + i ) 1 2  

The potential (28) supports a finite number ( N +  1) of bound states. The ground-state 
wave function 

+‘lo’(x) = (sech X ) ( ~ I - ~ )  (31) 

V 2 ( x ) = - ( A , + $ - Q 1 )  sech’x. (32) 

leads to 

Inspection of this equation shows that 
( i )  if A I  > 1, then V 2 ( x )  is an attractive sech’ x potential; 
(i i)  if A I  = 1, V 2 ( x )  vanishes and H2 is a free particle Hamiltonian; 
(iii) if A I  < 1, V 2 ( x )  is repulsive and corresponds to a sech2 barrier. 
It is easy to show that the parameter corresponding to Q1 for V2 is 

Q2=[a+2(A,+f-Q,)11”= Q1-1. (33) 

E:”’ = -i[ Q2 - ( m  + f)]’ (34) 

The spectrum of H2 is then given by 

which satisfies the condition E:”) = E$”’+’). Iteration of this argument shows that the 
Hamiltonian hierarchy corresponds to a sequence of sech2 potentials with successively 
decreasing strengths. It is easy to show that 

V,, = -A, sech’ x 

Qn = On-1 - 1. 

Q,, = (2An +a)”’ 
(35) 

If N = Q1 -5, V n + l ( x )  vanishes. If N < ( Q1 -i), VN+’(x )  corresponds to a sech’ barrier, 
given by 

V N + 2 ( x )  = t (Q,  - N - i ) (  N + i -  Ql) sech’ x. (36) 
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In this section, we have shown that by choosing the factorisation energy 8 to be 
the ground-state energy it is possible to generate a new Hamiltonian H2 without an 
eigenstate at the energy corresponding to the ground state of HI, but retaining the rest 
of the spectrum of HI. It has been demonstrated that this procedure may be iterated 
to generate a Hamiltonian hierarchy with spectra aligned as in figure 2. Other possible 
factorisations are examined in the next section. 

5. Factorisation energy 8 less than the ground-state energy 

When the factorisation energy 8 in equation (17) is less than the ground-state energy 
E(') of H, the solution $(x, 8) of H$ = S$ is not a normalisable solution, even though 
$( 8) is still a solution of A-( a)$( 8) = 0. The lack of normalisability of $( %) means 
that A'( %)A-( a) cannot have zero as an eigenvalue and the spectrum of A+A- begins 
at positive values, The analysis of Q 2 shows that when A'A- has no normalisable 
eigenstate with eigenvalue zero, it is possible for A-A' to have spectrum beginning 
at eigenvrtlue zero. For A'A- to have a normalisable state with eigenvalue zero, the 
solution 4 of A'( S)$ = 0 must be normalisable. The solution of 

shows that if the unnormalisable solution $(x, 8) of the Hamiltonian H is chosen in 
such a way that l / $  is normalisable, then $(x, 8) is normalisable and A-A' has a 
spectrum beginning at eigenvalue zero. Therefore 

f i = ~ - ( 8 ) ~ + ( 8 ) +  8 8 < E''' (39) 

has a ground state at energy I?(') = 8 with a ground-state eigenfunction $'"(x, 8 )  = 
$(x, 8 ) .  fi, therefore, has a ground-state eigenvalue below the ground state of H while 
all other eigenstates of fi are degenerate with the eigenstates of H. This corresponds 
to the level scheme depicted in figure l ( b ) .  Hence when l / $  is normalisable 

has ground state 
i f 0 1  = 8 < E(') 

where 
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The phase factor cp in equation (14) has been chosen to be r. Having chosen cp 
to be zero for the case of elimination of a state in 0 3, the requirement that adding a 
state by a transformation and subsequently eliminating the same state by another 
transformation should give back the original eigenfunctions, fixes the phase factor for 
the case of addition of a state to be T. 

If 8 < E('), but the unnormalisable solution $(x, 8) does not lead to a normalisable 
1 / $  and (d2/dx2) In $(x, 8) is well behaved, in a sense to be defined shortly, then 
neither A+( %')A-( 8) nor A-( %)A+( 8) has a normalisable eigenstate with eigenvalue 
zero. We denote such a solution $ by 6. Therefore, A+A- and A-A+ have identical 
spectra as depicted in figure l (c ) .  Then 

The phase factor (o has been left undetermined. Furthermore, the non-normalisable 
solutions $ and $ for energy 8 are connected by 

$(x, 8) = 8). (45) 
In this section, we assume that -CO 6 x s CO and postpone discussion of 0 s r s CO 

to 11. It is necessary to make this distinction because the types of singularities of the 
potential V that are physically admissible depends upon the range of values of the 
variable x. Potentials with singularities l /r2 are admissible for the radial problem, but 
a l /x2  singularity is inadmissible when -COS x s CO. Furthermore, the discussion of 
the construction of a normalisable l / $  depends upon the spatial domain in which $ 
and V are defined. We now examine the question of the normalisability of l / $  when 
--ccGxsoo. 

Let (ol(x, 2E) be a nodeless solution of H $ = E $  for %<E( ' ) .  Another linearly 
independent solution at the same energy is given by 

(oz(x, 8) = cpl(X, 8) lX d z / d ( z ,  8). (46) 

The nodelessness of cpl  guarantees that this integral is well defined. The general solution 
at energy 8 is given by 

in which the lower limit on the integral has been chosen to be --CC and (Y is an arbitrary 
constant. For potentials that vanish in the asymptotic region, when 8 < E(') ,  cpl grows 
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exponentially, as 1x1 + 00 and q2 vanishes at x = -00 but grows exponentially as x + +W. 

Let 

For values of a in the range - p  < a < 00, J, will remain nodeless, though l / +  is 
unnormalisable. Therefore, for - p  < a < CO, 1/ + is singularity free and normalisable 
because 1/ J, dccreases exponentially as 1x1 + 00. This range of values of a then leads 
to normalisable 1/ + and 1/ J, corresponds to an eigenstate of H as defined in equation 
(40) with ground state E''' = 8. 

For the limiting values a = - p  and a = 00, + would vanish exponentially at x = *too 
and grow exponentially x = Tcc. Therefore for these limiting values l/J, would become 
unnormalisable. We first consider a = - p  and denote the solution J, for this value of 
a by 6. Then 

5- ' P I  ( d z / d ) .  

Since for 8 = - i y 2  the asymptotic behaviour of (ol is given by 

(49) 

the asymptotic behaviour of 6 can be inferred to be 

x--cc lim t-exp(-yx) and x + + m  lim 6-exp(-yx). (51) 

Therefore 

d2 
lim 7 In 6( x, 8) - 0. 

1xI-m dx 

Similarly, for a = +a, 

lim 5'- exp( yx). 
/XI'= 

Hence 

U 
lim 7 In f (x ,  8) - 0. 

Ix1-m dx (54) 

Though + vanishes at x = +CO for these limiting values of a, (d2/dx2) In +(x, 8, a )  
remains finite at x = fa. 

Thus, for the limiting values a = - p  and a = 00, though l/J,(x, 8, a )  is unnormalis- 
able, (d2/dx2) In IC, is well behaved, i.e. divergence free and finite in the asymptotic 
region. These values of a then lead to fi defined in equation (43) with the same 
spectrum as H. But, if a < -p ,  J, vanishes for some finite value of x, as can be seen 
from an examination of equation (47) and (d2/dx2) In +(x, 8, a )  then diverges when 
tL vanishes. Hence, for a < -p,  $(x, 8, a )  does not lead to a physically acceptable 
potential f. The above analysis is illustrated with examples in the next section. 
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5.1. Free particle 

Let V(x) = 0. H has only a positive energy spectrum. For negative energies S = -iy2, 
the general solution of Ht+b = S$ is given by 

$(x, 8) = cosh yx + a sinh yx. (55) 
Though $ is unnormalisable, for values of the parameter (Y in the range 
nodeless and I / $  is normalisable. The family of potentials 

(cosh yx+ (Y sinh Y X ) ~  

< 1, $ is 

.. 
( 5 6 )  

d2 yy1-  a') 
V =  V - T l n $ ( x ,  S ) =  / f f l < l  dx 

therefore have a single bound state at energy 
k(0) = - i y 2  

with ground-state eigenfunctions 

1 
(cosh yx + (Y sinh -yx) 

I a l< l .  
$ C O ) - - =  1 

J, 

For positive energies, equation (44) then gives 

d sinh yx + a cosh yx ( dx+  'cosh yx + a sinh yx $(x, E )  = - [ 2 ( E  -- 

In the asymptotic region 1x1 +CO, this equation becomes 

lim $(x, E )  = - [ 2 ( E  -E(0))]-1/2 
/xl+c= 

( 5 9 )  

The a independence of this equation means that the transmission coefficient of this 
family of potentials V(x, E, a )  are identical. This family of potentials is an example 
of the 'phase equivalent' family of Bargmann. 

5.2. Simple harmonic oscillator 

The oscillator potential does not belong to the category of potentials that remain finite 
in the asymptotic region. Nevertheless, the oscillator example serves to clarify some 
of the discussion in 0 5. 

The harmonic oscillator Hamiltonian 

has the eigenvalue spectrum 

E = ( n + i )  n = 0 , 1 , 2  , . . .  . (61 )  
The even solution of HJ,  = %'J, for all energies can be written in series form (Abromowitz 
and Stegun 1965) and is given by 

cpl(x, 8 ) = ( e x p - i x 2 )  1+6x2+S(4+6)-+6(4+6)(8+6)-+.  . .  

with 

( 6 2 a )  
x4 X6 ( 4! 6 !  

6 = ( 1 - 2 8 ) .  ( 6 2 b )  
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For energies below the ground state of the oscillator 8 < E''' = i, 6 > 0, which 
guarantees that pl is positive definite. 'pl is then a nodeless function of x. 'pl(x, 8) 
can also be written in terms of the standard parabolic cylinder functions U and V as 

The asymptotic expressions for U and V show that 
lim ql(x, 8) - x-('+tJ exp(tx2). 

IXI" 

Thus cpl(x, 8) is a nodeless unnormalisable solution when 8 <f. The linearly indepen- 
dent solution 

'PAX,  8) = ' P I  [; d z l d z )  (64) 

can also be written in series form as 

(p2(x, 8 )=x(exp-$x2)  

cp2 vanishes at x = 0, but the series within the parentheses is positive definite when 
8 < f. In terms of the parabolic cylinder functions 

The general solution at energy 8 is then given by 

If we define the parameter 

then, for (a1 < p, 

is nodeless and l / +  is normalisable. The family of Hamiltonians 

d2 
dx  k = H -7 In +(x, 8, a) I a k P  (70) 

therefore have identical spectra. This family of potentials is another example of the 
Bargmann 'phase equivalent' family. 

In explicit terms: 
d2 

8 < f  (71) P(x, 8, a)=fx2-,ln[qI(x, dx 8 ) + a ' ~ 2 ( x ,  811 la1 < P (  81, 

have the spectra 
$ O ) =  8 < L  

2 

g ( m ) = ( m - ; )  m = 1 , 2 , .  . . 
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with eigenfunctions 

where 

and @('I is a harmonic oscillator eigenfunction. Since the energy E(') is arbitrary as 
long as E") < i, the above equations give a recipe for constructing anharmonic potentials 
with spectra defined by equation (72). 

The asymptotic behaviour of these potentials V(x, 8, a )  can be studied analytically 
using the asymptotic form of the parabolic cylinder functions. It is easy to show that 

(73 )  
d2 

lim 7 In(x, 8, a )  - 1. 
/x!-a: dx 

Therefore 

This asymptotic limit is independent of a or 8. Furthermore 

= 1. dcp*(x, 8) lim q,(x, 8) = 0 
x-0 x-0 dx 

lim (75) 

Hence 

lim x - 0  ?(x, 8 , a ) = 2 8 + a 2 .  (76) 

Using the series expansion for cpl and q2, the potentials f ( x ,  8, a )  have been 
calculated for a range of values of E and a < p(  8). Figure 3 shows V(x, 8, a )  for 
8 = -i and a in the range of values O <  a < 2 / A .  Since the potentials ? in equation 
(71) satisfy the condition f ( x ,  8, a )  = V(-x, 8, - a )  only the results for positive values 
of a are shown. The potential for the corresponding negative values of a can be 
obtained by mirror reflection about the y axis. As remarked earlier, this family of 
potentials is an example of the 'phase equivalent' family. For a = 0, ?(x) = tx'- 1 is 
a shifted oscillator. This is the only value of a for which ?(x) is invariant under 
parity transformation. Thus, by imposing a specific condition on f (x) ,  a unique 
member of the family is obtained. Figures 4-7 show ?(x, 8, a )  for a range of value 
of 8 for a fixed value of a = 0. These figures show that for 0 < 8 < f, the ground state 
of the new potential f(x) lies inside a double well. This is an example of the general 
result that when 8 lies below the ground state of a given potential V(x), but 8 > Vmin(x) 
?here Vmin(x) is the absolute minimum of the potential, the resulting partner potential 
V(x) is necessarily a double well. It can be shown on general grounds that a double 
well is necessary to accommodate the new level at 8 close to the first excited state of 
f ( x )  at energy E('). Figures 4-7 show double well potentials whose exact spectrum 
is fixed by construction to be of the form indicated in equation (72). 
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Figure 3. The 'phase equivalent' potentials 
V ( x ,  g, a) are shown for P = -4. The value of a is 
indicated below each curve. The harmonic oscillator 
potential V ( x )  = tx' is also shown as a broken curve. 
The potentials shown in the figure by full_curves have 
identical spectra with ground state at E'"= - 4  as 
indicated by the horizontal broken line. The rest of 
the spectrum is identical to that of the oscillator. 

293 1 

/ 
I 

Figure 4. The potential ?(x ,  8, a) for 'R =0.45 and 
a = 0. The harmonic oscillator potential is indicated 
as a broken curve. The ground state of ? at energy 
8 is indicated as a broker, line. The first excited 
state which is degenerate with the oscillator ground 
state is indicated by a full line. The rest of the 
spectrum of V is identical to that of the harmonic 
oscillator. 

We next consider the limiting values a = * p .  Since 

+(x, 8, * p ) -  U(-%,  Fx&) 

lim +(x, 8, * p ) - , y ( ~ g - $ )  exp(*$x2) 
X-00 

x+-'X lim 4(x, 8, * p ) - , y ( i  8-+) exp(F+x2) ( 7 7 c )  

the functions l /+(x,  $, * p )  are unnormalisable. But, 

d2 
lim 7 In +(x, 8, fp) - +1 

x+-m dx 

d2 
lim 7 In +(x, 8, f p )  - F 1 

x-+m dx 

These limiting values show that limlxl+m (d2/dx2) In +(x, 8, p (  8)) is divergence free 
even though +(x, 8, p )  vanishes at x = F 03. Hence 
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Figure 5. Same as figure 4, but for 8 = 0.35. Figure 6. Same as figure 4, but for 8 = 0.25. 

1. 

Pix1 
I 0 -  

\ 

I 
\I 

X 

- 2 -  

Figure 7. Same as figure 4, but for 8 = 0. 

has the spectrum 

( m - t t )  m = 0 , 1 , 2 ,  . . .  (goal z ( m )  = 

which is identical to the spectrum of the harmonic oscillator. The eigenfunctions of 
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6 are given in terms of the oscillator eigenfunctions by 

Therefore the Hamiltonian fi( 8) for various values of 8 < $ have spectra identical to 
the harmonic oscillator spectrum. They do not belong to the phase equivalent family, 
but F(8) can be identified as members of the Bargmann class of potentials. This is 
discussed fully in 11. The potentials V(x, %‘, p (  8)) have been calculated numerically 
by the same procedure as that for V(x, 8, a). Figure 8 shows the potentials so calculated 
for a range of values of 8 and positive value for p (  g) .  The potential for negative /3 
can be obtained by mirror reflection. The limiting values of V 

X” lim F(x, ~ , P ( s ) ) - $ x ’ - I  ( 8 l a )  

x+--13 lim F(x, g,p(8))-+x2+1 (816) 

lim x - 0  F(x, 8, ~ ( 8 ) )  = 2 8 + p 2 ( 8 )  (81c) 

show that the leading order asymptotic limits of V(x, 8, p (  8)) are independent of 8. 

\ 

‘\ 

I 
/ 

I , / !  - 2  5 
- 0 5  

1 
4 

I V 
Figure 8. The potential V(x, 8, p (  8)) for a range of values of 8. The value is indicated 
on each curve. The harmonic oscillator potential is shown as a broken curve. All the 
potentials shown in this diagram have spectra identical to that of the harmonic oscillator. 
The asymptotic values of the full curves are given by limy-= A V =  -1, lim,,-,AV= +1 
where A V  = 6 ( x )  - V(x). 
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When la1 > /3, $(x, $, a )  has a node at finite value of x which would lead to infinite 
barriers in the potential Q(x) for finite x. This is because (d2/dx2) In $ would diverge 
wherever $ vanishes. Such potentials can be rejected on physical grounds. 

6. Conclusions 

In this paper it has been demonstrated that the algebra of supersymmetry can be used 
to find a partner Hamiltonian to any one-dimensional Hamiltonian of the Schrodinger 
equation. The flexibility in the choice of the partner Hamiltonian enables the identifica- 
tion of different types of ‘supersymmetric’ pairings. A procedure for constructing 
Hamiltonians either with identical spectra or with identical spectra, apart from a 
missing ground state, has been given. This recipe can be used to either add a new 
ground-state eigenvalue to, or eliminate the ground-state eigenvalue of, or maintain 
the same spectrum as a given Schrodinger Hamiltonian. This procedure may be 
repeated again and again in a suitable combination to generate hierarchies of Hamil- 
tonians whose spectra are related to each other. By applying this procedure to the 
simple harmonic oscillator, anharmonic potentials whose spectra are identical to that 
of the harmonic oscillator or contain a ground state lower in eigenvalue than the 
ground state of the oscillator have been constructed. When the additional state has 
energy 0 < ,6(’) < f, the resulting anharmonic potential is shown to be a double well 
which accommodates the ground state inside the double well. Several recent papers 
have turned to the Gelfand-Levitan procedure of the inverse scattering method to 
generate anharmonic potentials (Abraham and Moses 1980, Mielnik 1984). In 11, by 
applying the concept of a supersymmetric partner to a given radial Schrodinger 
equation, we establish the connection of the procedure outlined in this paper to the 
Gelfand-Levitan method (Gelfand and Levitan 1951) and show that the families of 
potentials generated by the ‘supersymmetric method’ belong to the Bargmann class of 
potentials (Bargmann 1949). 

Appendix 

In this appendix we study the nonlinear equation 

U 2 + d U / d x = 2 (  V -  $). 

This equation can be solved by finding solutions of the auxiliary equation 

d2$/dx2=2( V -  S)$. 

In the main text, it was shown that U = (d/dx) In I,!I is a solution of equation (Al) .  
However, a more general solution may easily be constructed (Nieto 1984). Let 

d In I,!I 
dx 

f=- U=f+cp 

then equation ( A l )  shows that (o must satisfy 

dip/dx+(02+2fip = O .  

Let y = l /q ,  then 
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leads to the solution 

Y=(exp / ' 2 f ( ~ ) d z ) [ A + / ~ ( e x p - / ' 2 f ( y ) d y )  dz] 

where A is an arbitrary constant. The complete solution for U is then given by 

which is the equation used in the main text. U may also be written as 

U = dx In ( A $  + $ lX dz/G2(z)). 

It is clear now that this solution could have been obtained by examination of the 
differential equation (A2). If i,bl is a solution of this equation, the linearly independent 
solution ( l(rl Jx dz/ i,b:( z ) )  may be used to construct the general solution 

Since for any function g(x)  

d21ng 1 d2g 
dx2 g dx2 

the identification U = (d/dx)  In g then shows that equation ( A l )  may be used to write 

1 d2g 1 d2+ 
g dx  + dx2 

2 - 2 (  v- %') =- - 

with the immediate solutions g = $ and 

where we have used the general solution + in equation (A9). 
It is now apparent that the equation for (d ldx)  In CF, is nonlinear as a consequence 

of the fact that the equation for $ is a second-order linear differential equation and 
permits linear superposition of two independent solutions. To accommodate this 
superposition principle for +, the equation for In $ is nonlinear. 
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